Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0228325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999773

RESUMO

Structural knowledge of gastropod hemocyanins is scarce. To better understand their evolution and diversity we studied the hemocyanin of a caenogastropod, Pomacea canaliculata (PcH). Through a proteomic and genomic approach, we identified 4 PcH subunit isoforms, in contrast with other gastropods that usually have 2 or 3. Each isoform has the typical Keyhole limpet-type hemocyanin architecture, comprising a string of eight globular functional units (FUs). Correspondingly, genes are organized in eight FUs coding regions. All FUs in the 4 genes are encoded by more than one exon, a feature not found in non- caenogastropods. Transmission electron microscopy images of PcH showed a cylindrical structure organized in di, tri and tetra-decamers with an internal collar structure, being the di and tri-decameric cylinders the most abundant ones. PcH is N-glycosylated with high mannose and hybrid-type structures, and complex-type N-linked glycans, with absence of sialic acid. Terminal ß-N-GlcNAc residues and nonreducing terminal α-GalNAc are also present. The molecule lacks O-linked glycosylation but presents the T-antigen (Gal-ß1,3-GalNAc). Using an anti-PcH polyclonal antibody, no cross-immunoreactivity was observed against other gastropod hemocyanins, highlighting the presence of clade-specific structural differences among gastropod hemocyanins. This is, to the best of our knowledge, the first gene structure study of a Caenogastropoda hemocyanin.


Assuntos
Gastrópodes/genética , Gastrópodes/metabolismo , Hemocianinas/química , Hemocianinas/genética , Animais , Evolução Molecular , Gastrópodes/química , Perfilação da Expressão Gênica , Genômica , Hemocianinas/metabolismo , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteômica
2.
PLoS One ; 13(6): e0198361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856808

RESUMO

The eggs of the freshwater Pomacea apple snails develop above the water level, exposed to varied physical and biological stressors. Their high hatching success seems to be linked to their proteins or perivitellins, which surround the developing embryo providing nutrients, sunscreens and varied defenses. The defensive mechanism has been unveiled in P. canaliculata and P. maculata eggs, where their major perivitellins are pigmented, non-digestible and provide a warning coloration while another perivitellin acts as a toxin. In P. scalaris, a species sympatric to the former, the defense strategy seems different, since no toxin was found and the major perivitellin, PsSC, while also colored and non-digestible, is a carbohydrate-binding protein. In this study we examine the structure and function of PsSC by sequencing its subunits, characterizing its carbohydrate binding profile and evaluating its effect on gut cells. Whereas cDNA sequencing and database search showed no lectin domain, glycan array carbohydrate binding profile revealed a strong specificity for glycosphingolipids and ABO group antigens. Moreover, PsSC agglutinated bacteria in a dose-dependent manner. Inspired on the defensive properties of seed lectins we evaluated the effects of PsSC on intestinal cells both in vitro (Caco-2 and IEC-6 cells) and in the gastrointestinal tract of rats. PsSC binds to Caco-2 cell membranes without reducing its viability, while a PsSC-containing diet temporarily induces large epithelium alterations and an increased absorptive surface. Based on these results, we propose that PsSC is involved in embryo defenses by altering the gut morphophysiology of potential predators, a convergent role to plant defensive lectins.


Assuntos
Proteínas do Ovo/fisiologia , Ovos , Trato Gastrointestinal , Lectinas/fisiologia , Comportamento Predatório , Ratos , Caramujos/química , Aglutinação , Animais , Células CACO-2 , Células Cultivadas , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Humanos , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Lectinas/farmacologia , Masculino , Comportamento Predatório/efeitos dos fármacos , Ratos/anatomia & histologia , Ratos/fisiologia , Ratos Wistar
3.
Sci Rep ; 7(1): 15848, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158565

RESUMO

Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.


Assuntos
Trato Gastrointestinal/metabolismo , Plantas/genética , Estabilidade Proteica , Proteínas de Armazenamento de Sementes/genética , Animais , Ovos/análise , Cinética , Camundongos , Valor Nutritivo/genética , Valor Nutritivo/imunologia , Comportamento Predatório/fisiologia , Conformação Proteica , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/imunologia , Sementes/química , Sementes/genética , Caramujos/química , Caramujos/genética
4.
Physiol Biochem Zool ; 90(4): 461-470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28402234

RESUMO

In contrast with vitellogenin maturation, it is unknown whether gastropod perivitellin precursors are subject to large structural changes. The gastropod reproductive tract includes an accessory organ, the albumen gland (AG), that produces and secretes perivitelline fluid. In the apple snail Pomacea canaliculata, the large, reddish-pink AG provides eggs with perivitellins that are defensive against predators. Although the AG makes a considerable contribution to apple snail biomass, field observations indicate that it is rejected by avian and mammalian predators, although the underlying reason remains unknown. By analyzing the structure-function properties of P. canaliculata perivitellin precursors, we provide insight into perivitellin maturation and its relationship with apple snail predator feeding behavior. Structural analysis using small-angle X-ray scattering, absorption and fluorescence spectroscopy, circular dichroism, electrophoresis, chromatography, and partial proteolysis showed that the size, shape, and structure of perivitellin precursors resemble those of egg mature forms. Functional analysis indicates that the precursors of the defensive perivitellins ovorubin (PcOvo) and perivitellin-2 (PcPV2) are highly stable and antinutritive, withstanding proteinase digestion and displaying structural stability of their quaternary structure under a wide pH range (4.0-10.0). Furthermore, AG extracts limit a predator's ability to digest nutrients and are toxic to mice (median lethal concentration 96 h after administration: 5.9 mg/kg). Treated mice displayed neurologic signs similar to those produced by egg PcPV2. Results indicate that apple snails store active precursors of egg proteins inside the AG, providing evidence that gastropod perivitellin precursors do not experience the large structural processing of invertebrate vitellogenin maturation. These defensive proteins provide the apple snail AG with neurotoxic, antinutritive, and antidigestive activity, a likely explanation for the predators' feeding behavior.


Assuntos
Líquidos Corporais/química , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Óvulo/química , Caramujos/fisiologia , Animais , Concentração de Íons de Hidrogênio , Comportamento Predatório
5.
PLoS One ; 8(5): e63782, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737950

RESUMO

Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0-10.0. cDNA sequencing and protein domain search showed that its two subunits share homology with membrane attack complex/perforin (MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator's body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/antinutritive/storage protein may confer the eggs a survival advantage, opening new perspectives in the study of the evolution of animal defensive strategies.


Assuntos
Toxinas Botulínicas/química , Lectinas/química , Neurotoxinas/metabolismo , Óvulo/metabolismo , Plantas/química , Proteínas Citotóxicas Formadoras de Poros/química , Caramujos/metabolismo , Sequência de Aminoácidos , Animais , Células CACO-2 , Hemaglutinação/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Imunização , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/toxicidade , Filogenia , Comportamento Predatório , Estabilidade Proteica , Coelhos , Ratos , Caramujos/imunologia , Caramujos/fisiologia
6.
PLoS One ; 7(11): e50115, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185551

RESUMO

Apple snail perivitellins are emerging as ecologically important reproductive proteins. To elucidate if the protective functions of the egg proteins of Pomacea canaliculata (Caenogastropoda, Ampullariidae), involved in embryo defenses, are present in other Pomacea species we studied scalarin (PsSC), the major perivitellin of Pomacea scalaris. Using small angle X-ray scattering, fluorescence and absorption spectroscopy and biochemical methods, we analyzed PsSC structural stability, agglutinating activity, sugar specificity and protease resistance. PsSC aggluttinated rabbit, and, to a lesser extent, human B and A erythrocytes independently of divalent metals Ca(2+) and Mg(2+) were strongly inhibited by galactosamine and glucosamine. The protein was structurally stable between pH 2.0 to 10.0, though agglutination occurred only between pH 4.0 to 8.0 (maximum activity at pH 7.0). The agglutinating activity was conserved up to 60 °C and completely lost above 80 °C, in agreement with the structural thermal stability of the protein (up to 60 °C). PsSC was able to withstand in vitro gastrointestinal digestion, and showed no trypsin inhibition activity. The presence of lectin activity has been reported in eggs of other Pomacea snails, but here we link for the first time, this activity to an apple snail multifunctional perivitellin. This novel role for a snail egg storage protein is different from closely related P.canaliculata defensive proteins.


Assuntos
Eritrócitos/efeitos dos fármacos , Óvulo/química , Caramujos/química , Vitelinas/química , Vitelinas/farmacologia , Aglutinação/efeitos dos fármacos , Animais , Cálcio/química , Cátions Bivalentes , Eritrócitos/citologia , Galactosamina/farmacologia , Glucosamina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Magnésio/química , Estabilidade Proteica , Coelhos , Espalhamento a Baixo Ângulo , Análise de Sequência de Proteína , Espectrometria de Fluorescência , Vitelinas/isolamento & purificação , Difração de Raios X
7.
PLoS One ; 5(12): e15059, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21151935

RESUMO

BACKGROUND: Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and cross-linking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. CONCLUSIONS: To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no trade-offs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg defensive strategies.


Assuntos
Proteínas do Ovo/farmacologia , Inibidores de Proteases/farmacologia , Animais , Anti-Infecciosos/farmacologia , Proteínas do Ovo/química , Feminino , Gastroenteropatias/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Comportamento Predatório , Estrutura Terciária de Proteína , Ratos , Análise de Sequência de DNA , Caramujos , Espectrometria de Massas em Tandem/métodos , Temperatura , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA